Closing Wed: HW_1A, 1B, 1C Read newsletter and postings. Read sections 5.2, 5.3, and 5.4.

Entry Task: Approximate the area under $f(x) = 1 + x^2$ from x = 2to x = 3 using Riemann sums with n = 4 and right endpoints. Step 1: $\Delta x = \frac{b-a}{n} =$ Step 2: $x_0 = a =$ $x_1 = a + \Delta x =$ $x_2 = a + 2\Delta x =$ $x_3 = a + 3\Delta x =$ $x_4 = a + 4\Delta x =$ Step 3: Plug in right endpoints to get rectangle heights

Area \approx $f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + f(x_4)\Delta x$

Pattern? $x_i = a + i \Delta x =$ $\sum_{i=1}^{4} f(x_i) \Delta x =$

General pattern in terms of *n*?

Another Example:

Using sigma notation, write down the general Riemann sum definition of the area from x = 5 to x = 7 under

$$f(x) = 3x + \sqrt{x}$$

$$\Delta x = \frac{b-a}{n} =$$

$$x_i = a + i \Delta x$$

$$\lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x =$$

Velocity/Distance & Reimann Sums

When velocity is a *constant*:

Distance = Velocity · Time If velocity is not constant, we can break the problem and approximate by assuming that velocity is constant over each subdivision.

Example:

You are accelerating in a car. You get the following measurements:

t (sec)	0	0.5	1.0	1.5	2.0
v(t) (ft/s)	0	6.2	10.8	14.9	18.1

Estimate the distance traveled by the car traveled from 0 to 2 seconds.

5.2 The Definite Integral

Def'n: We define the **definite integral of** f(x) from x = a to x = b by $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$, where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$.

Some Basic Definite Integral Rules: **Examples:** $1. \int_{1}^{10} 5 \, dx =$ $1.\int^{b} c \, dx = (b-a)c$ $2.\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx \quad 2.\int_{a}^{3} x^{2}dx + \int_{a}^{7} x^{2}dx =$ $3. \int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$ $3. \int_{0}^{4} 5x + 3 \, dx =$ $\int_{-\infty}^{\infty} f(x) + g(x) \, dx$ $= \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x) dx$ $4. \int_{a}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$ 4. $\int_{1}^{1} x^{3} dx = -\int_{1}^{3} x^{3} dx$

Example: Consider the area under f(x) = sin(x) + 2on the interval x = 0 to $x = 2\pi$.

- (a) What is the max of f(x)? (label M)(b) What is the min of f(x)? (label m)
- (c) Draw one rectangle that contains all the shaded area? What can you conclude?
- (d) Draw one rectangle that is completely inside the shaded area? Conclusion?

